EFFECTS OF ENVIRONMENTAL POLLUTANTS ON AQUATIC VERTEBRATE BIODIVERSITY AND INVENTORY OF HUB DAM: RAMSAR SITE

 *M Zaheer Khan¹, Abeda Begum¹, Syed Ali Ghalib¹, Abdur Razzaq Khan¹, Rehana Yasmeen¹, Tanveer Fatima Siddiqui², Afsheen Zehra¹, Darakhshan Abbas¹, Fouzia Tabassum¹, Saima Siddiqui², Tanveer Jabeen¹ and Babar Hussain¹
¹Department of Zoology, Faculty of Science, University of Karachi, Karachi-75270
²Department of Zoology, Federal Govt Urdu University of Arts, Science and Technology, Karachi.

ABSTRACT

In the present study, the effects of environmental pollution on aquatic vertebrate biodiversity were studied and inventory of vertebrate fauna of Hub Dam was prepared. The water samples taken from four sampling sites from the study areas viz. Main Dam, Spill way, Hub Canal and shallow water area were analyzed for physico-chemical parameters viz temperature in air, temperature in water, color, pH, TDS, COD, BOD, alkalinity, salinity, conductivity, hardness, Phosphate, Nitrate, Bicarbonates, Sulphate, Chloride, Carbon dioxide, Dissolved Oxygen, Turbidity and Fluoride, Cotiane (C_{1}^{+} , N_{2}^{+} , $N_{2}^$

Cations (Ca⁺, Na⁺, Mg⁺, K⁺) and some selected heavy metals (Cr, Fe, Ni, Cu, Zn, As, Cd, Pb, and Hg). The seasonal and yearly variations in selected physico chemical parameters and trace metals were determined with respect to the amount of annual rainfall and contamination factors involved. During the study, no adverse effects of environmental pollution were found on the aquatic biodiversity except for some minor toxic effects due to trace metals in water. All the physico – chemical parameters' values were observed as per limits of World Health Organization standard. Microbial analysis was carried out and water samples of Hub Dam did not meet the microbiological standard set by WHO. After suitable treatment the water may be supplied for domestic use. As many as 16 species of mammals, 160 species of birds, 23 species of reptiles, 03 species of amphibians, 29 species of fishes, and 25 species of plants were recorded from the Hub Dam area. There are no serious effects of pollution on the vertebrate biodiversity of the wetland. The population of the waterbirds has declined significantly in recent years mainly due to disturbances and commercial fishing activities in the reservoir area.

Keywords: Hub dam, environmental pollution, vertebrate biodiversity.

INTRODUCTION

Hub dam $(25^{\circ} 15^{\circ} N 67^{\circ} 07^{\circ} E)$ constructed across Hub River in 1981, at a distance of 56 km North of Karachi falls in the provinces of Sindh and Balochistan (Fig. 1). Main Dam is 15,640 m long whereas 5,400 m lies in Balochistan and 10,240 m in Sindh.

Hub Dam (Fig. 3) has also been declared as a Wildlife Sanctuary in Sindh and was established in 1972 for the preservation of waterbirds and the fish Mahsheer. It falls under Category IV of IUCN as Habitat / Species Management Area under the IUCN Protected Area Category System.

The dam is situated in an area of semi arid and desert with sedimentary rocks. The hills which run around on three sides are yellow with many shades of brown and grey. There are a few small islands in the midst of the reservoir. The Hub River rises in Kirthar Range of eastern Balochistan and enters the Arabian Sea just west of Karachi. The water level in the reservoir fluctuates widely according to rainfall in the water catchment area which extends over 3410 sq.miles. The topography of the upper catchment is sub – mountainous to hilly and plain. The area is generally barren with sparse vegetation at certain locations. The catchment of the Hub reservoir is wholly rain fed. The dam is relatively shallow with maximum depth of 9.6 m. The water has relatively high concentration of dissolved salts of sulphates, sodium and chloride and dissolved oxygen which results into much greater primary and secondary production (Sohail Siddiqi, pers. comm.).

The Hub Dam Canal system consists of the Main Canal, Karachi Water Supply Canal, Lasbella Canal and the Bund Murad Minor (Fig. 2). The water supply canal is 14 miles long lined with concrete tiles to supply 100 MGD to Karachi Water and Sewerage Board.

The Lasbela branch canal, 20 miles long lined with concrete tiles to supply water for irrigation of 21,000 acres of land and 15 MGD water for industries in Lasbela district.

^{*}Corresponding author email: zaheerkhan67@yahoo.ca

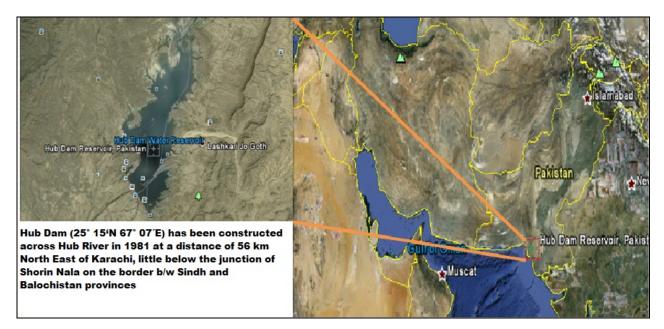


Fig.1. Map of Pakistan showing the location of Hub Dam.

S. No.	Name	Location	Area
01	Astola (Haft Talar) Island	Balochistan	5,000ha
02	Chashma Barrage	Punjab	34,099 ha
03	Deh Akro	Sindh	20243 ha
04	Drigh Lake	Sindh	164 ha
05	Haleji Lake	Sindh	1,704 ha
06	Hub Dam	Sindh, Balochistan	27,000 ha
07	Indus Delta	Sindh	472,800 ha
08	Indus Dolphin Reserve	Sindh	125,000 ha
09	Jiwani Coastal Wetland	Balochistan	4,600 ha
10	Jabho Lagoon	Sindh	706 ha
11	Keenjhar Lake	Sindh	13,468 ha
12	Miani Hor	Balochistan	55,000 ha
13	Nurri Lagoon	Sindh	2,540 ha
14	Ormara Turtle Beaches	Balochistan	2,400 ha
15	Rann of Kutch	Sindh	566,375 ha
16	Tanda Dam	Khyber Pakhtoonkhah	405 ha
17	Taunsa Barrage	Punjab	6,756 ha
18	Thanedar Wala,	Khyber Pakhtoonkhah	40,47 ha
19	Uchhali Complex (including Khabbaki, Uchhali and Jahlar lakes),	Punjab	1,243 ha

Table 1. List of Ramsar Sites in Pakistan.

The climate of the area tends to be very arid and average annual rainfall is less than 200 mm. The temperature often exceeds 36°C during the summer.

The water level in the dam depends on the amount of rainfall in the water catchment area. The maximum depth is 45 m and the average drawdown 19m. There has been no ample rain for the last five years and the water level in the reservoir has decreased significantly, posing a problem for the drinking water supply to Karachi West.

This site is an important staging and wintering area for waterbirds including Grebes, Pelicans, Flamingos, Anatids, Coots and Cranes. It regularly supported over 45,000 water birds (in the past, but does not anymore) including Black-necked Grebe (*Podiceps nigricollis*), Little Cormorant (*Phalacrocorax niger*), Tufted Duck (*Aythya fuligula*),Common Pochard (*Aythya ferina*), Dalmatian Pelican (*Pelecanus crispus*), White Pelican (*Pelecanus onocrotalus*), Coot (*Fulica atra*), and Little Tern (*Sterna albifrons*). The site is a breeding site for

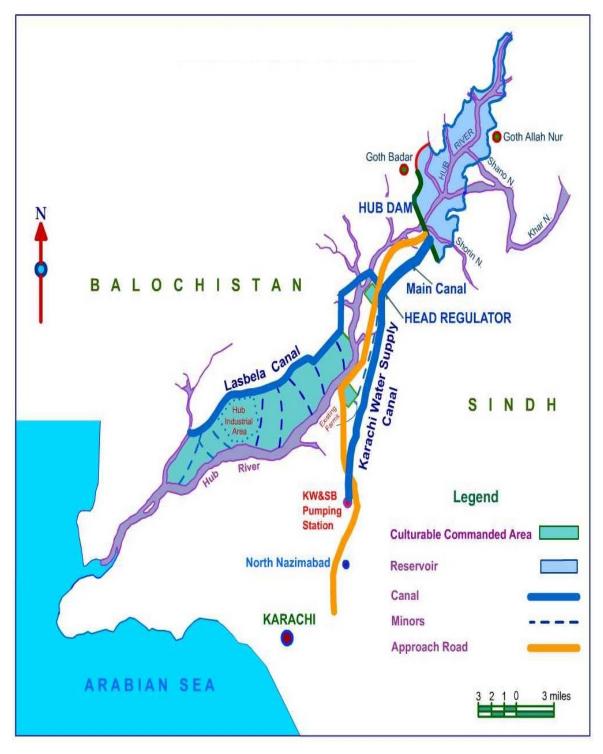


Fig. 2. Map showing location of Hub Dam.

Little Tern (*Sterna albifrons*) and Painted Snipe (*Rostratula benghalensis*). Marsh Crocodile or Mugger (*Crocodylus palustris*) is now found in the Hub Reservoir. The reservoir is an important spawning ground for a large number of fishes including some exotic fishes such as *Labeo rohita, Cyprinus carpio* and *Tilapia mossambica*,

while the Mahsheer (*Tor putitora*) is the most important fish of this reservoir.

During 1986, the Fisheries Directorate, WAPDA started development of fisheries at Hub Dam according to National Fisheries Management Program to meet the

Fig. 3. View of Hub Dam.

protein demand of the growing population of the country. In order to develop and promote fisheries in Hub reservoir, a medium sized hatchery and a rearing farm were established in 1990 located in front of WAPDA colony on the right bank of Hub Dam Canal, 500 meter downstream of the Dam. (Muhammad Aslam, pers. comm.).

Commercial fishing was allowed in the Dam in 1988. Since 1989, hatchery and rearing farm were utilized to produce fish seeds of the following species:

Rohu (Labeo rohita) Mori (Cirrihinus mrigala) Gulfam (Cyprinus carpio) Silver carp (Hypophthalmichthys molitrix) Grass carp (Ctenopharyngodon idella)

An area of 27,192ha on the eastern shore and south of dam in the Sindh province has been declared as a Wildlife Sanctuary but the greater part of the reservoir in Balochistan province remains unprotected.

There are social impacts due to the presence of the many villages around such as Haji Muhammad Bux Goth, Usman Qalandria Goth, Dado Bandeejah Goth, Robo Goth, and Safar Goth. Raho Khaskeli Goth is the largest one having a population of almost 3000 people.

The objective of the present study was to identify the environmental factors and their effec on the aquatic vertebrate biodiversity and to prepare the inventory of vertebrate biodiversity of Hub Dam with a view to make recommendations for its conservation and management.

MATERIALS AND METHODS

The reservoir and adjoining areas were regularly visited during summer and winter seasons from 2007 to 2010. Quarterly surveys of three weeks duration were undertaken each year in the area for the collection of data with regard to the occurrence, distribution and habitats of the biodiversity of the area i.e birds, mammals, reptiles, fishes, amphibians and plants.

The avifauna of Hub Dam consists of resident as well as migratory species. Water bird census was undertaken in January and the data for the annual Waterbird Census were collected.

On the basis of baseline study, sites such as Spill way area, Main Hub dam, Main Sampling Point, Agriculture Land, Khar Centre, Usman Qalandria Goth, Hub Canal, Roho Khaskheli Goth, Robo Goth, Safar Goth, Rest House, Plantation Area and Bund Murad were selected for data collection with respect to mammals, resident and migratory birds, reptiles, amphibians, fishes and plants (Fig. 4, Table 2).

A. PARAMETERS FOR WATER QUALITY ANALYSIS

(i) Preparation of water samples and sampling sites

For the study of physico-chemical parameters, composition of trace metal and microbial analysis, four different sites viz. Main Dam, Spill way, Hub Canal, and shallow water were selected. Rainfall data were collected from Metrology department.

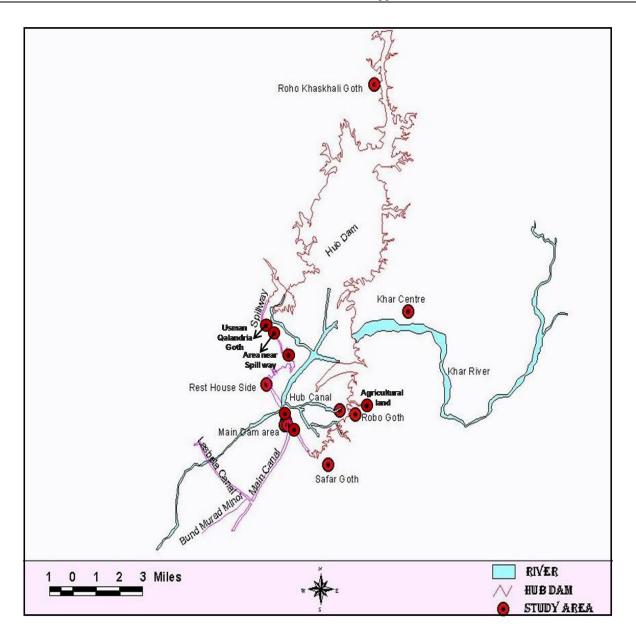


Fig. 4. Map showing the study areas.

During the study period 2007 - 2010, most of the samples were collected in 1000 ml polyethylene screw – cap bottles in order to obtain the water of the required depth. Bottles were cleaned sequentially, tap water rinse, 24 hour soak in 1% HNO₃ and several distilled water rinse. Dried at 100°C for 1 hour, cooled at room temperature, capped and labeled. After collecting the samples, 10 ml HNO₃ (1 ml acid / 100 ml) was added to the samples which were useful for the estimation of concentration of trace metals.

(ii) Digestion of the samples

A very crucial step to analyze the samples was the transformation of a sample into an analytic solution. For this purpose a complete digestion of the samples was required. Decomposition procedures were dry ashing and wet oxidation (Gorsuch, 1976; Santa *et al.*, 1986). In present investigation nitric acid based digestion method was carried out.

(iii) Methodology

For the preparation of reagents, Analytical Grade (AR) chemicals were used. For the determination of water quality parameters, standard analytical methods were carried out.

(a) Physico Chemical Analysis of Samples

Temperature measured at the spot by using Mercury Thermometer, pH was recorded with Orion 420 pH meter. Alkalinity was measured by titration method with 0.02 M hydrochloric acid (Electrometric method No.15 WHO,

S. No.	Study Area	Co-ordinates	Habitat
01	Area near Spill Way	N 25° 17′ 23.2	Rocky slopes with sparse vegetation
	(Balochistan)	E 67° 05′ 55.6	reservoir area
02	Main Dam area	N 25° 14 ′ 35.5	Wetland
		E 67° 06′ 45.8	
03	Main sampling point (on dam)	N 25° 14′ 42.9	Wetland
		E 67° 06′ 40.1	
04	Agriculture land / Shallow water	N 25° 14′ 55.3	Agriculture land, Rocky area and
	area towards Khar Centre	E 67° 08′ 56.3	marshes
05	Khar Centre	N 25° 18′ 03.2	Hilly, Rocky area and Agricultural
		E 67° 11′ 40.9	plain area
06	Usman Qalandria Goth	N 25° 17′ 38.5	Rocky area, Agricultural land and
		E 67° 05′ 94.2	Plain area
07	Hub Canal	N 25° 14′ 26.6	Rocky and Plain area
		E 67° 06′ 48.6	
08	Roho Khaskheli Goth	N 25° 17′ 48.4	Rocky and Flat Plain area
		E 67° 10′ 12.2	, i i i i i i i i i i i i i i i i i i i
09	Robo Goth	N 25° 14′ 48.1	Rocky and Plain area
		E 67° 09′ 32.5	
10	Safar Goth	N 25° 13′ 15.6	Rocky area, Agricultural land and
		E67° 08′ 31.2	Plain area
11	Rest House Side	N 25° 15′ 40.1	Wetland and Rocky area
		E 67° 05′ 54.8	, i i i i i i i i i i i i i i i i i i i
12	Plantation Area	N 25° 16′ 32.3	Forest / Wetland and Rocky area
		E 67° 06′ 39.1	
13	Bund Murad	N 26° 05′ 77.4	Wetland and Rocky area
		E 69° 09′ 39.0	

Table 2. Study areas of Hub Dam.

1982). Conductivity was measured by light and dark bottles method (Welch, 1952). The turbidity of water was estimated with the help of Secchi disk while free Carbon Dioxide was measured as describe by APHA (1998). By gravimetric methods Sulphate and TDS were determined, Chloride by argentometric method, Nitrate was measured by employing a specific ion analyzer Orion -710, Calcium and Magnesium were determined by EDTA titration method, Sodium and Potassium were measured by flame photometer. The Chemical Oxygen Demand (COD) was measured by Method No. 16.4 (WHO, 1982), BOD, Fluoride, Bicarbonate, Salinity and Colour were measured by using standard method APHA (1998). Phosphate was measured using pectrophoto-metric method (Jones et al., 1983), Hardness were analyzed by titration with 0.01m EDTA (Ethylene Diamine Tetra Acetic Acid, Method No. 103 WHO, 1982). Dissolved Oxygen was analyzed by standard procedure mentioned in APHA (1998).

(b) Chemical Analysis of Trace Metals

To give aqueous phase the acidified water samples were treated with reagent and trace metal analyzed by Flame Atomic Absorption (Mastoi *et al.*, 1997). Digested liquid wastes were used to analyze Cr by Graphite Furnace

method. Fe by Flame Absorption Atomic Spectrophotometer, Ni by Graphite Furnace method, Cu and Zn by Flame Atomic Absorption Spectrophotometer, As by Hydrate Generation method, Cd and Pb by Graphite Furnace method, Na and K by Flame Photometer method, Ca and Mg by titration method and Hg by Hydrate Generation method. The instrument (Perkin Elmer Model No. A analysts 700) was using different techniques such as Flame atomic absorption spectrometer, Graphite and hydrates system to analyze the chemicals. Determination for each metal was taken out in triplicate for getting representative results.

(c) Microbial Analysis of the samples

For microbial analysis, samples were collected in Brown Nelson Bottles and immediately transferred to lab. Microbial characteristic of the water samples were determined such as HPC, Total Coliforms and Faecal Coliforms by using multiple fermentation technique and membrane filter techniques described by standard method APHA (1998).

B. Survey Techniques and Counting Methods for the Biodiversity

Following direct and indirect observation methods have been applied during the surveys.

Large Mammals

The mammals were indentified by Roberts (1997, 2005a, b).

1. Roadside Counts

In this method, motor vehicles have been used along the road trails while the sighted number of individuals of the species being estimated is tallied and related to the number of kilometers travelled (Brower *et al.*, 1990). Roadside counts method has some advantages such as: travelling on vehicle does not disturb the animals and there is a chance to observe the animals along the road / track from a few meters distance. Another advantage of this method is that large areas can be covered in short time using only two persons and a vehicle, but in this method there are chances of some species being overlooked.

2. Track Counts

A track count is another method used for locating and observing the presence of nocturnal and secretive animals.

3. Pellet Counts

This technique involves removing all pellet groups from plots and then estimating from subsequent observations on those plots the number of groups per hectare to compare animal use of area between sampling periods.

Small Mammals

One effective way to survey small mammals is active searching, particularly during the day time. This method is equally applicable to both nocturnal and diurnal species in potential and suitable microhabitats along the banks, open plains, particularly in bushy areas and agriculture fields. Active searching is very effective for inventory of Gerbils, Jirds, Porcupine, and Hedgehogs. To investigate nocturnal species, night surveys are conducted in exposed areas of potential habitats on the ground. This methodology involves the use of a powerful torch light, sticks, long boots, gloves etc.

A mixture of different food grains mixed with fragrant seeds may be used as bait for the attraction of the small mammals. Wheat and rice are used as food grain while peanut butter, corriander, oats and onion are used for fragrance. This bait is found to be highly successful in the study area probably due to the overall shortage of food and fragrance.

Traps and trapping procedure

Sherman traps are used to collect the live specimens. Fifty traps are set at specific areas on a line approximately 500 m long and approximately 10 m apart. Each trap is marked by a colorful ribbon to locate the traps easily. The

traps are set in the afternoon and checked early in the morning. The specimens are transferred into polythene bags, identified in the field and released.

Birds

Birds are identified using spottingscopes and binoculars and making use of the field identification guides such as Grimmett (1998) and Snobe *et al.* (1993). Each major habitat type in the study area was identified and surveyed to record the species of birds found in each discreet habitat such as marshes, forest, agriculture fields, vicinity of human habitation and fallow lands. The number of birds observed in each habitat type was also recorded with particular emphasis on the key species and to relate the data to other components of the study area such as vegetation, water and soil etc.

The most commonly used field method in birds surveying is the "Line Transect method". It is based on recording birds continually along a predefined route within a predefined survey unit.

Line Transects are suitable for extensive, open and uniform habitats and for large and conspicuous species. Double counting of birds becomes a minor issue as the observer is continually on the move. Line Transects are suited to situations where access is good and these are very useful for bird-habitat studies (Khan *et al.*, 2010b).

In the present studies, each sample area was transversed/ examined by 2 observers separately; birds were searched on each side of the strip for 150m so that each study strip was 300m wide.

To evaluate the numbers of water birds the entire reservoir area, associated marshes, rocky and plain areas, and agriculture land were surveyed.

Reptiles and Amphibians

Various survey techniques have been employed to record the reptiles and amphibians (Khan *et al.*, 2010a).

A: Direct Counting: 1. Plot Searching

This consists of searching approximately 20 ha. (with 250 meter radius of sampling points) for one hour and recording the number of individuals of each species seen. Similarly night survey is done with the help of search lights and torches.

2. Pitfall Traps

Reptiles and amphibians are also detected using a line or pitfall traps. Each pitfall line consists of 30 meter of low, flexible nylon fencing pinned to the ground to divert the movements of small ground dwelling animals mainly reptiles with six 3-liter meter bucket buried in the ground with its lips at ground level along and below the fence, so that the fence straddled each bucket. The use of pitfall lines are restricted to sites where the ground surface is soft enough to dig or sandy areas. Pitfall lines are set for one night only. Team members reach early in the morning before sunrise and record the total number of reptiles of each species found in the bucket.

3. Turning of Stones, Rocks and Rotten Trees Process

Nocturnal reptiles and amphibians take shelter or rest hiding themselves under the space of stones or rocks. Therefore, in the day time survey, stones or rocks or rotten fallen trees are turned to locate and record the animals.

4. Study of Basking Behavior

This method of sighting or locating Crocodiles is the most suitable but it can be applied mostly in winter season. In winter, the temperature of the water becomes very low. Crocodiles come outside the lake to enjoying the sunshine and keep warm. Thus, counting of crocodiles becomes very easy at particular areas during this season.

B: Indirect Counting

Presence of signs like fecal pellets, tracks, den or tunnels (egg laying excavation)

Evidences from the impression of finger or footprints, or tail, presence of fecal pellets, tracks and existence of tunnels (egg laying excavation) are collected to record the occurrence of various reptiles.

Fishes

Samples of fishes were collected through gill netting and cast netting. The data collected through these two methods were pooled and this formed the representative sampling of the study site.

RESULTS AND DISCUSSION

In the present study, water quality parameters were analyzed to assess the impact of environmental pollution on aquatic biodiversity, while inventory of vertebrate fauna of Hub Dam was also prepared.

A: Water Quality

Physico – chemical Parameters

The water of the reservoir was found to be clear, odourless and tasteless. During the study period, Air Temperature, Water Temperature, Color, pH, Total Dissolved Solids, COD, BOD, Alkalinity, Salinity, Conductivity, Hardness, Phosphate, Nitrate, Bicarbonate, Sulfate, Chloride, Carbon Dioxide, Dissolved Oxygen, Turbidity, Calcium, Magnesium, Sodium, Potassium and Fluoride along with a few trace metals were recorded viz. Chromium, Iron, Nickel, Copper, Zinc, Cadmium, Lead, Mercury and Arsenic at the Main Dam, Spill Way, Hub Canal and in shallow water. The results of all selected physico – chemical parameters and trace metals were compared with the given WHO standard values.

Total amount of annual rainfall recorded in 2007 was, 465.6 mm, in 2008, 121.6 mm, in 2009, 279.9 mm and in 2010, 372.9 mm.

Results of all the physico-chemical and trace metals are shown in tables 3 and 4. All the physico - chemical and biological properties are dependent on the temperature as it is essential for aquatic environment. Temperature is important for the aquatic environment, the growth and death of aquatic life depends on maximum and minimum temperatures that fluctuate during summer and winter season. The minimum temperature of water was recorded at 17°C in November and 29°C in June. The maximum temperature in June indicates the season of extreme summer before rain when the DO declines and concentration of salt becomes higher and disturbs the aquatic life. The value of color of water body as per WHO Standard is 6 Hazen and the observed value during present study is under the limits set by WHO. In a previous study Beg et al. (1988) the color was recorded in the range 3-6. The mean value of water color observed during 2007 - 2010 in Hazen scale shown in table 4, a slight fluctuation was noted in summer and winter season in all the sampling sites. The pH which is approximately neutral is an indication of unpolluted water (Fakoyode, 2005), here pH of Hub Dam water were 6.8 to 7.5 in all sampling sites which is best for the survival of aquatic organisms, WHO recommended the value of pH 6.5 -9.0, while Beg et al. (1988) reported 7.2 to 8.0. The mean of TDS was observed shown in table 4, these values are under WHO limits, while Beg et al. (1988) recorded range 1176 - 1309 mg/l. High value of BOD means decline in DO that could create trouble for survival of the fish and other aquatic organisms. Chemical Oxygen Demand and Biochemical Oxygen Demand were not detected during present investigation. No detection of COD and BOD indicated that no industrial effluent comes in the water body. Higher value of Alkalinity causes higher level of pollution in the water, recorded values of Alkalinity shown in table 4. Alkalinity was previously recorded between 60-90 mg/l (Beg et al., 1988) all recorded values are under the permissible value of WHO standard limits i.e. 50 - 500 mg/l. The mean salinity of all sampling sites was recorded having no adverse impact on aquatic biodiversity. Higher value of Salinity presented during summer may be due to evaporation and low value was recorded during rainy season. Conductivity indicates the level of the soluble salts that are present in water body. Higher value of conductivity indicates highly polluted water not fit for drinking and for supplying but in the present study the results show that the water is not polluted having no adverse effect on aquatic life. The hardness was observed to be within the prescribed value

of WHO standard i.e. 200 - 500 mg/l and estimated value indicates that there is no pollution in water body. Mean value of Nitrate was recorded. The maximum value of Nitrate was recorded in shallow water 0.518 mg/l near plantation area, it slightly exceeded in shallow water because of agricultural land near by this site and water drainage during rains on this site that indicated a slightly exceeded value as compared to other site but its value did not indeed exceed the limit of WHO Standard limits (40 mg/l). Phosphate was not detected during the present study. No concentration of phosphate was recorded in all sampling sites which indicate that water is unpolluted and safe for aquatic biodiversity. Bicarbonate was found to have the higher values than the Sulphate and Chloride in all sampling sites. The mean value of Bicarbonate, Sulphate and Chloride were estimated. In a previous study the bicarbonates were measured ranging between 98-154 mg/l during 1978 - 1985 (Beg et al., 1988).Carbon Dioxide was observed to be very low. In the present study, low level of Carbon dioxide in water as compared to DO indicated favourable conditions for fish. The recorded value of Carbon Dioxide indicates that there is no adverse effect of CO₂ on aquatic organisms. DO were recorded as a high value in rainy period in all sampling sites and lower value were measured after rainy period in winter. These values of DO in all sites are under the limit of WHO Standard that indicates the safe site for aquatic biodiversity survival. In present study, turbidity values were also within acceptable range in all sites. Highest level of turbidity has an adverse effect on aquatic life and high value of turbidity could be due to the discharge of untreated effluent so in the present investigation no such untreated effluents were found. Fluoride is an important constituent for drinking water and for aquatic organisms, if a higher value of Fluoride is present in water it is caused by pollution. Recorded value of Fluoride indicated no adverse effect on aquatic biodiversity and the level of Fluoride is lower than the prescribed value of WHO standards (1.5 mg/l). Calcium plays an important role in aquatic environment. The concentration of Ca was recorded at higher value during summer; minimum concentration was recorded in rainy period due to dilution of Dam water. The higher value of Ca may adversely affect quality of water. The mean value of Magnesium was estimated at 14.189 mg/l. Sodium is an important element in drinking water. During study period the measured value of Sodium is in range 51.192 - 51.305 mg/l. Physiological problems may be produced in water for flora and fauna in aquatic environment due to higher value of Sodium and Potassium (Khuwar and Mastoi, 1996). In the present study, the mean recorded value of K and Na in all sampling sites ranged between 5.37 - 5.52mg/l. The concentration of cations during present study were estimated in Ca > Na > Mg > K while in previous study the concentration was recorded in this order Na > Ca > Mg > K.

(ii) Trace Metal Analysis

Trace metals get access into aquatic environment from anthropogenic sources and get distributed in water, suspended solids and sediments from the course of their transportation (Olajre and Imeo Kparia, 2000). The mean concentrations of trace metals of Hub Dam were recorded from all sampling sites (Table 4). The concentrations of trace metals are widely found in all samples and with values comparatively higher as per limits of WHO Standard. The Variation in values of trace metals were measured during summer, rainy season and winter. The recorded values of trace metal in water of Hub Dam indicated a little pollution caused due to drainage of water, human waste and other human activities. The recorded value of Cr in present study indicates a higher value as compared to the set limit of WHO Standard i.e. 0.05 mg/l. Fe is a most abundant metal found in natural water body within the range of 0.5 - 50 mg/l (WHO, 1993). The recommended value of WHO standard is 0.3 mg/l and estimated value slightly exceeds the limit of WHO standard. In the present study, Fe level does not have high adverse effect on biodiversity as it is under acceptable limits. Some micro organisms convert ferrous into ferric hydroxide by taking dissolved iron as an energy source (Trivedi, 1993). Nickel is normally found in water bodies by the drainage of sewage water. The WHO Guidline value is 0.02 mg/l and our observed value of Ni was found to exceed the WHO limit. The concentration of Ni was generally found in low level. The level of copper indicated a higher value as per WHO standard i.e 2.0 mg/l but observed value is acceptable having no adverse effect on aquatic biodiversity. Recorded value of Zn indicates the acceptable range in all sites and did not exceed the WHO limit of 3.0 mg/l. Cadmium toxicity affects kidney, heart and liver (Mench et al., 1997), and even the low concentration of Cd affects aquatic life. In the present study, the mean value of Cd of all sampling sites was slightly higher than WHO Standard i.e. 0.003 mg/l. It can affect aquatic biodiversity and human health. Pb is a normally toxic and cumulative poisonous metal present in water bodies. Pb value was significantly higher than the prescribed value of WHO standard i.e. 0.01 mg/l during present study. Mercury is a highly toxic metal and yearly mean was recorded. Arsenic is a highly toxic metal and it affects the digestive tract, abdominal cavity and muscle tissue in fish with highly adverse effects but in the present investigation no traces of arsenic were observed in sampling sites.

Based on chemical examination, the water of this reservoir was fit for drinking purposes. But there are some agriculture lands near the margins which may in the long run affect the water quality of the reservoir. There are few social impacts like washing of clothes and grazing of cattle. These social impacts may affect and pollute the water but not to a great extent.

(iii) Microbial Analysis

The range of bacteria is determined by heterotrophic count (HPC) in any environment (EPA, 2002). In all water samples, the total bacterial counts were exceeded the limits of WHO standard 1998, of heterotrophic count which is 100 cfu / dl.The microbiological analysis of the reservoir was taken for HPC, total coliforms and faecal coliforms. In year 2007, HPC $1.7x10^3$ cfu/ml, total coliforms 6.3 x 10^1 cfu/ml, and faecal coliforms 6.0 x 10^1 cfu/ml. In year 2008, HPC 1.6^3 x 10 cfu/ml, total

coliforms 7.1 x 10^{1} cfu/ml, and faecal coliforms 5.2 x 10^{1} cfu/ml. In year 2009, HPC 1.5 x 10^{3} cfu/ml, total coliforms 7.2 x 10^{1} cfu/ml, and faecal coliforms 5.0 x 10^{1} cfu/ml, and in year 2010, HPC 1.6 x 10^{3} cfu/ml, total coliforms 6.9 x 10^{1} cfu/ml, and faecal coliforms 4.9 x 10^{1} cfu/ml were measured. The present investigation indicated that the water is microbiologically unfit for drinking purpose as per limit of WHO guidline and needs to be treated before supplying.

Parameters	Main Dam	Spill Way	Hub Canal	Shallow Water	WHO's Stand.
Temperature in air (°c)	25.07	25.36	25.1	25.27	-
Temperature in water (°c)	22.315	21.86	21.93	22.2	-
Color (Hazen Scale)	2.65	2.56	2.575	2.55	6 Hazen Scale
pH	7.18	7.1	7.125	7.07	6.5 - 9.0
TDS (mg/l)	514.9	515.84	515.69	516.09	-
COD	ND	ND	ND	ND	-
BOD	ND	ND	ND	ND	-
Alkalinity (mg/l)	74.43	74.52	74.45	74.91	30 - 500 mg / 1
Salinity (mg/l)	0.364	0.346	0.343	0.348	-
Conductivity (µs/cm)	564.21	564.68	560.21	528.41	NS (No standard)
Hardness (mg/l)	177.9	177.51	177.44	177.9	100 - 200 mg / 1
Phosphate	ND	ND	ND	ND	-
Nitrate (mg/l)	0.414	0.416	0.409	0.518	50.0 mg / 1
Bicarbonate (mg/l)	122.96	125.32	123.6	129.6	-
Sulphate (mg/l)	74.28	74.28	73.95	73.97	250 mg / 1
Chloride (mg/l)	97.3	96.83	97.25	97.237	250 mg / 1
Carbon Dioxide (mg/l)	1.41	1.392	1.421	1.41	-
Dissolved Oxygen (mg/l)	4.145	4.162	4.268	4.198	-
Turbidity (NTU)	1.341	1.334	1.4	1.382	5 NTU
Fluoride (mg/l)	0.397	0.394	0.384	0.393	1.5 mg / 1
Calcium (mg/l)	56.08	52.105	52.16	52.555	-
Magnesium (mg/l)	14.189	14.313	14.2	14.4	-
Sodium (mg/l)	51.27	51.302	51.305	51.192	200 mg / 1
Potassium (mg/l)	5.37	5.487	5.383	5.52	-

Table 3. Mean Composition of Physico-chemical Analysis of all Sampling Sites during 2007-2010.

ND: Not Detected in mg/l

Table 4. Mean Composition of Trace Metal Analysis of all Sampling Sites during 2007-2010.

Metals	Main Dam	Spill Way	Hub Canal	Shallow Water	WHO's Standards
Chromium (mg / l)	0.0825	0.077	0.072	0.085	0.05 mg / 1
Iron (mg / l)	0.759	0.727	0.746	0.74	0.3 mg / 1
Nickel (mg / l)	0.0625	0.07	0.075	0.071	0.02 mg / 1
Copper (mg / l)	2.567	2.621	2.608	2.677	2.0 mg / 1
Zinc (mg / l)	1.208	1.151	1.137	1.242	3.0 mg / 1
Cadmium (mg / l)	0.097	0.09	0.079	0.086	0.003 mg / 1
Lead (mg / l)	0.199	0.187	0.188	0.26	0.01 mg / 1
Mercury (mg / l)	0.015	0.017	0.015	0.016	0.001 mg /
Arsenic (mg / l)	BDL	BDL	BDL	BDL	0.01 mg / 1

BDL = Below Detection Limit

B: Current Inventory

During the study, 16 species of mammals, 160 species of birds, 23 species of reptiles, 3 species of amphibians, 19 species of fishes, and 25 species of plants were recorded from Hub Dam and surrounding areas.

Mammals

Sixteen species of mammals belonging to 6 orders and 10 families were recorded (Table 5).

Asiatic Jackal (*Canis aureus*), Red Fox (*Vulpes vulpes*), Grey Mongoose (*Herpestes edwardsi*), Small Indian Mongoose (*Herpestes javanicus*), House Mouse (*Mus musculus*), Desert Jird (*Meriones hurrianae*), Indian Porcupine (*Hystrix indica*), Five-striped Palm Squirrel (*Funambulus pennantii*), Desert Hedgehog (*Hemiechinus collaris*) and Roof Rat / House Rat (*Rattus rattus*) were recorded as common.

Indian Fox (Vulpes bengalensis), Red Fox (Vulpes vulpes), Jungle Cat (Felis chaus), Small Mongoose (Herpestes javanicus) and Grey Mongoose (Herpestes edwardsi), Pangolin (Manis crassicaudata), Porcupine (Hystrix indica), Cairo Spiny Mouse (Acomys cahirinus) and Indian Hare (Lepus nigricollis) are the important mammals of the area.

Birds

Out of the total of 197 species of birds recorded so far (Table 6), 68 species were new findings and 37 species reported earlier were not recorded during the present study (Table 6).

There are 79 resident species, 72 winter visitors, 03 summer breeding visitors, 01 summer visitor and 06 passage migrants.

Waterbirds form the largest group of the birds recorded

comprising of 71 species, while there are 41 species of passerines, 27 species of birds of prey, 07 species of game birds and 14 species of other birds recorded during the present study.

Garganey, Demoiselle Crane, Kentish Plover, Yellow Wagtail, and Black – headed Bunting were recorded as passage migrants. Common Swift and Blue-cheeked Beeeater were recorded as summer breeding visitors, while Common Tern was recorded as a summer visitor.

The most common birds of the area include Little Grebe, Large Cormorant, Grey Heron, Pond Heron, Large Egret, Little Egret, Pintail, Shoveller, Common Pochard, Black Kite, Marsh Harrier, Black Headed Gull, Little Tern, Ring Dove, House Swift and Indian Pied Kingfisher.

WATER BIRD CENSUS

The winter visitors are mainly water birds which migrate to Pakistan along the Central Asian / Indus Flyway during the migratory season ranging from October to April. January is the peak season for these birds. Annual Waterbird Censuses have been undertaken on Hub Dam during 2000 to 2004 and in 2010, while from 2005 to 2009 the censuses were not undertaken (Fig.6).

The population of the waterbirds has declined drastically during recent years as compared to earlier records mainly due to disturbances and commercial fishing activities in the reservoir.

Reptiles

Twenty three species of reptiles were recorded. The common species of reptiles of the area include Spotted Indian House Gecko (*Hemidactylus leschnaultii*), Yellowbellied House Gecko (*Hemidactylus flaviviridis*), Common Tree Lizard (*Calotes versicolor*) and Indian

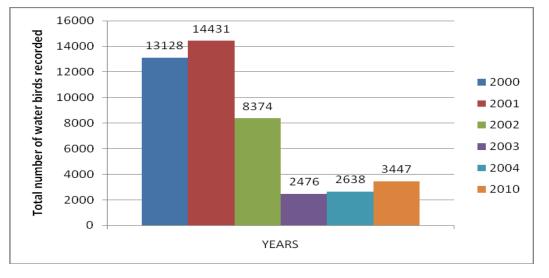


Fig. 6. Graph showing results of annual Waterbird census at Hub Dam.

Fringed-toad Lizard (*Acanthodactylus cantoris*) (Table 7). Marsh Crocodile (*Crocodylus palustris*), Brilliant Agama (*Trapelus agilis*), Indian Spiny – tailed Lizard (*Saara hardwickii*), Indian Monitor Lizard (*Varanus bengalensis*), Indian Cobra (*Naja naja*), Indian Fringed toed Lizard (*Acanthodactylus cantoris*), Indian Desert Monitor (*Varanus griseus*) Indian Sand Boa (*Eryx johnii*), Common Krait (*Bungarus caeruleus*) and Saw Scaled

Table 5. List of Mammals Recorded from Hub Dam.

Viper (*Echis carinatus*) are the important species of reptiles of the area.

Amphibians

Three species of amphibians were recorded viz. Indus Valley Toad (*Bufo stomaticus*), Skittering Frog (*Euphlyctis cyanophlyctis*) and Burrowing Frog (*Sphaerotheca breviceps*) (Table 8).

S. No.	Order	Family	Scientific Name	Common Name	Status
01	Insectivora	Erinaceidae	Hemiechinus collaris	Long eared or Desert Hedge hog	С
02	Chiroptera	Pteropidae	Rousettus egyptiacus	Egyptain Bat	L/c
03	Carnivora	Canidae	Canis aureus	Asiatic Jackal	С
04	Carnivora	Canidae	Vulpes bengalensis	Indian Fox	L/c
05	Carnivora	Canidae	Vulpes vulpes	Red fox	С
06	Carnivora	Herpestidae	Herpestes edwardsi	Grey Mongoose	С
07	Carnivora	Herpestidae	Herpestes javanicus	Small Indian Mongoose	С
08	Carnivora	Felidae	Felis chaus	Jungle Cat	R
09	Lagomorpha	Leporidae	Lepus nigricollis	Indian Hare	L/c
10	Pholidota	Manidae	Manis crassicaudata	Indian Pangolin	R
11	Rodentia	Sciuridae	Funambulus pennanti	Five striped Palm Squirrel	С
12	Rodentia	Hystricidae	Hystrix indica	Indian Porcupine	С
13	Rodentia	Muridae	Rattus rattus	Roof Rat / House Rat	L/c
14	Rodentia	Muridae	Mus musculus	House mouse	С
15	Rodentia	Muridae	Acomys cahirinus	Cairo Spiny Mouse	L/c
16	Rodentia	Muridae	Meriones hurrianae	Desert Jird	С

Table 6. Consolidated List of Birds recorded from the Hub Dam.

S. No.	Order	Family	Scientific Name	Common Name	Occurre nce	Status	Recorded earlier (Ghalib <i>et</i> <i>al.</i> , 2000)	Recorded during present study (2007-2010)
1	Podicipediformes	Podicipedidae	Podiceps cristatus	Great Crested Grebe	WV	L/c	+	+
2	Podicipediformes	Podicipedidae	Podiceps grisegena	Red necked Grebe	WV	Ra	+	-
3	Podicipediformes	Podicipedidae	Podiceps nigricollis	Black necked Grebe	WV	L / c	+	+
4	Podicipediformes	Podicipedidae	Tachybaptus ruficollis	Little Grebe	R	С	+	+
5	Pelecaniformes	Pelecanidae	Pelecanus onocrotalus	Great White Pelican	WV	L / c	+	+
6	Pelecaniformes	Pelecanidae	Pelecanus crispus	Dalmatian Pelican	WV	Ra	+	+
7	Pelecaniformes	Phalacrocoracidae	Phalacroco rax carbo	Large Cormorant	WV	С	+	+
8	Pelecaniformes	Phalacrocoracidae	Phalacroco rax niger	Little Cormorant	R	С	+	+
9	Pelecaniformes	Anhingidae	Anhinga rufa	Indian Darter	R	L / c		+
10	Ciconiiformes	Ardeidae	Ardea cinerea	Grey Heron	WV	С	+	+

Table 7. Continue...

S. No.	Order	Family	Scientific Name	Common Name	Occurre nce	Status	Recorded earlier (Ghalib <i>et</i> <i>al.</i> , 2000)	Recorded during present study (2007-2010)
11	Ciconiiformes	Ardeidae	Ardea purpurea	Purple Heron	R	L / c	+	+
12	Ciconiiformes	Ardeidae	Ardeola grayii	Pond Heron	R	С	+	+
13	Ciconiiformes	Ardeidae	Egretta alba	Large Egret	WV/R	С	+	+
14	Ciconiiformes	Ardeidae	Egretta intermedia	Median Egret	R	L/c	+	_
15	Ciconiiformes	Ardeidae	Egretta garzetta	Little Egret	R	С	+	+
16	Ciconiiformes	Ardeidae	Egretta gularis	Indian Reef Heron	R	L / c	—	+
17	Ciconiiformes	Ardeidae	Ixobrychus minutus	Little Bittern	R	L/c	+	_
18	Ciconiiformes	Ardeidae	Dupetor flavicollis	Black Bittern	R	Ra	+	_
19	Ciconiiformes	Threskiornit- hidae	Plegadis falcinellus	Glossy Ibis	R/WV	L / c	+	+
20	Ciconiiformes	Threskiornit- hidae	Platalea leucorodia	Spoonbill	WV/R	L / c	+	+
21	Ciconiiformes	Phoenicop- teridae	Phoenicopte rus ruber	Great Flamingo	NBR	L / c	+	+
22	Anseriformes	Anatidae	Anser anser	Greylag Goose	WV	Ra	+	_
23	Anseriformes	Anatidae	Tadorna tadorna	Common Shelduck	WV	L / c	+	+
24	Anseriformes	Anatidae	Anas angusti- rostris	Marbled t\Teal	WV	Ra	+	-
25	Anseriformes	Anatidae	Anas acuta	Pintall	WV	С	+	+
26	Anseriformes	Anatidae	Anas crecca	Common Teal	WV	С	+	+
27	Anseriformes	Anatidae	Anas platyr- hynchos	Mallard	WV	L / c	+	+
28	Anseriformes	Anatidae	Anas strepera	Gadwall	WV	L / c	+	+
29	Anseriformes	Anatidae	Anas penelope	Wigeon	WV	L/c	+	+
30	Anseriformes	Anatidae	Anas querquedula	Garganey	PM	Ra	+	+
31	Anseriformes	Anatidae	Anas clypeata	Shoveller	WV	С	+	+
32	Anseriformes	Anatidae	Netta rufina	Red Crested Pochard	WV	Ra	+	+
33	Anseriformes	Anatidae	Aythya ferina	Common Pochard	WV	С	+	+
34	Anseriformes	Anatidae	Aythya nyroca	Ferruginous Duck	WV	Ra	+	+
35	Anseriformes	Anatidae	Aythya fuligula	Tufted Duck	WV	L / c	+	+
36	Falconiformes	Accipitridae	Elanus caeruleus	Black winged Kite	R	L / c	+	+
37	Falconiformes	Accipitridae	Milvus migrans	Black Kite	R	С	+	+

S. No.	Order	Family	Scientific Name	Common Name	Occurre nce	Status	Recorded earlier (Ghalib <i>et</i> <i>al.</i> , 2000)	Recorded during present study (2007-2010)
38	Falconiformes	Accipitridae	Haliastur indus	Brahminy Kite	R	L / c	_	+
39	Falconiformes	Accipitridae	Accipiter badius	Central Asian Shikra	R	L/c	+	+
40	Falconiformes	Accipitridae	Buteo rufinus	Long legged Buzzard	WV	L / c	-	+
41	Falconiformes	Accipitridae	Hieraaetus pennatus	Booted Hawk-Eagle	WV	L / c	-	+
42	Falconiformes	Accipitridae	Aquila heliaca	Imperial Eagle	WV	L / c	+	+
43	Falconiformes	Accipitridae	Aquila rapax	Tawny Eagle	R	L / c	_	+
44	Falconiformes	Accipitridae	Aquila nipalensis	Steppe Eagle	WV	L / c	—	+
45	Falconiformes	Accipitridae	Hieraaetus fasciatus	Bonelli's Eagle	R	Ra	+	_
46	Falconiformes	Accipitridae	Aquila clanga	Greater Spotted Eagle	WV	L / c	_	+
47	Falconiformes	Accipitridae	Haliaeetus leucoryphus	Pallas's Fishing Eagle	R	L / c	_	+
48	Falconiformes	Accipitridae	Aegypius monachus	Black Vulture / Cinereous Vulture	R	L/c	+	_
49	Falconiformes	Accipitridae	Gyps fulvus	Griffon Vulture	R	L/c	+	+
50	Falconiformes	Accipitridae	Gyps bengalensis	White backed Vulture	R	Ra	+	_
51	Falconiformes	Accipitridae	Neophron percnopterus	Egyptian Vulture	R & B	L/c	+	+
52	Falconiformes	Accipitridae	Circus cyaneus	Hen Harrier	WV	L / c	-	+
53	Falconiformes	Accipitridae	Circus macrourus	Pallid Harrier	WV	L/c	+	+
54	Falconiformes	Accipitridae	Circus pygargus	Montagu's Harrier	WV	L / c	—	+
55	Falconiformes	Accipitridae	Circus aeruginosus	Marsh Harrier	WV	С	+	+
56	Falconiformes	Accipitridae	Circaetus gallicus	Short-toed Eagle	R	L/c	+	+
57	Falconiformes	Pandionidae	Pandion haliaetus	Osprey	WV	L/c	+	+
58	Falconiformes	Falconidae	Falco jugger	Lagger Falcon	R	L/c	_	+
59	Falconiformes	Falconidae	Falco columbarius	Pallid Merlin	WV	L/c	-	+
60	Falconiformes	Falconidae	Falco tinnunculus	Common Kestrel	R/WV	L/c	_	+
61	Galliformes	Phasianidae	Francolinus francolinus	Black Partridge	R	Ra	-	+
62	Galliformes	Phasianidae	Francolinus pondicerianus	Grey Partridge	R	L / c	—	+

S. No.	Order	Family	Scientific Name	Common Name	Occurre nce	Status	Recorded earlier (Ghalib <i>et</i> <i>al.</i> , 2000)	Recorded during present study (2007-2010)
63	Gruiformes	Gruidae	Grus grus	Common Crane	М	L / c	+	+
64	Gruiformes	Gruidae	Anthropoides virgo	Demoiselle Crane	PM	L / c	+	+
65	Gruiformes	Rallidae	Rallus aquaticus	Water Rail	WV	L / c	_	+
66	Gruiformes	Rallidae	Amaurornis phoenicurus	White- breasted Water Hen	R	С	-	+
67	Gruiformes	Rallidae	Gallinula chloropus	Indian Moorhen	R	С	_	+
68	Gruiformes	Rallidae	Fulica atra	Coot	WV	С	+	+
69	Charadriiformes	Jacanidae	Hydrophasia nus chirurgus	Pheasant Tailed Jacana	R	L/c	+	+
70	Charadriiformes	Charadriidae	Vanellus leucurus	White-tailed Lapwing	WV	L / c	+	+
71	Charadriiformes	Charadriidae	Vanellus gregarius	Sociable Lapwing	WV	Ra	+	_
72	Charadriiformes	Charadriidae	Vanellus vanellus	Lapwing	WV	Ra	+	_
73	Charadriiformes	Charadriidae	Vanellus indicus	Red wattled Lapwing	R	С	+	+
74	Charadriiformes	Charadriidae	Vanellus malabaricus	Yellow- wattled Lapwing	SBV	L / c	+	+
75	Charadriiformes	Charadriidae	Charadrius leschenaultii	Large Sand Plover	WV	L / c	+	+
76	Charadriiformes	Charadriidae	Charadrius hiaticula	Ringed Plover	WV	L / c	+	+
77	Charadriiformes	Charadriidae	Charadrius dubius	Little Ringed Plover	R	L / c	+	+
78	Charadriiformes	Charadriidae	Charadrius alexandrinus	Kentish Plover	SBV/W V/PM	L / c	_	+
79	Charadriiformes	Charadriidae	Charadrius mongolus	Lesser Sand Plover	WV	L/c	_	+
80	Charadriiformes	Scolopacidae	Numenius phaeopus	Whimbrel	WV	L/c	_	+
81	Charadriiformes	Scolopacidae	Numenius arquata	Curlew	WV	L/c	-	+
82	Charadriiformes	Scolopacidae	Limosa limosa	Black Tailed Godwit	WV	L/c	+	+
83	Charadriiformes Charadriiformes	Scolopacidae Scolopacidae	Limosa lapponica	Bartailed Godwit	WV WV	L/c L/c	-	+
84 85	Charadriiformes	Scolopacidae	Tringa totanus Tringa	Common Redshank Marsh	WV WV	L/c L/c	+	+ +
85	Charadriiformes	Scolopacidae	stagnatilis Tringa	Sandpiper Green Shank	WV WV	L/c L/c	-	+
80	Charadriiformes	Scolopacidae	nebularia Tringa	Common	WV WV	C C	-+	+
87	Charadriiformes	Scolopacidae	hypoleucos Arenaria	Sandpiper Turn Stone	WV	L/c	+	
00	Charachinolines	scoropacidae	interpres		** *	L/C	I	_

Table 7. Continue...

S. No.	Order	Family	Scientific Name	Common Name	Occurre nce	Status	Recorded earlier (Ghalib <i>et</i> <i>al.</i> , 2000)	Recorded during present study (2007-2010)
89	Charadriiformes	Scolopacidae	Calidris minutus	Little Stint	WV	С	_	+
90	Charadriiformes	Scolopacidae	Calidris temminckii	Temminck's Stint	WV	L / c	_	+
91	Charadriiformes	Scolopacidae	Philomachus pugnax	Ruff	WV	L / c	_	+
92	Charadriiformes	Rostratulidae	Rostratula benghalensis	Painted Snipe	R	L/c	_	+
93	Charadriiformes	Recurvirostridae	Himantopus himantopus	Black winged Stilt	R	С	+	+
94	Charadriiformes	Burhinidae	Burhinus oedicnemus	Stone Curlew	R	Ra	+	-
95	Charadriiformes	Glareolidae	Cursorius cursor	Cream Coloured Courser	R	L / c	+	+
96	Charadriiformes	Laridae	Larus argentatus	Herring Gull	WV	L / c	+	+
97	Charadriiformes	Laridae	Larus fuscus	Lesser Black backed Gull	WV	L / c	_	+
98	Charadriiformes	Laridae	Larus ichthyaetus	Great Black headed Gull	WV	L/c	-	+
99	Charadriiformes	Laridae	Larus brunnicepha lus	Brown Headed Gull	WV	L / c	-	+
100	Charadriiformes	Laridae	Larus ridibundus	Black Headed Gull	WV	С	+	+
101	Charadriiformes	Laridae	Larus canus	Common Gull	WV	L / c	_	+
102	Charadriiformes	Sternidae	Chlidonias hybrida	Indian Whiskered Tern	М	L / c	+	+
103	Charadriiformes	Sternidae	Chlidonias leucopterus	White – winged Black Tern	РМ	L / c	-	+
104	Charadriiformes	Sternidae	Gelochelido n nilotica	Gull bellied Tern	WV	Ra	+	+
105	Charadriiformes	Sternidae	Sterna aurantia	Indian River Tern	R	L / c	-	+
106	Charadriiformes	Sternidae	Sterna hirundo	Common Tern	SV	L / c	_	+
107	Charadriiformes	Sternidae	Sterna acuticauda	Black – bellied Tern	R	L/c	-	+
108	Charadriiformes	Sternidae	Sterna albifrons	Little Tern	R	С	+	+
109	Charadriiformes	Sternidae	Sterna sandvicensis	Sandwich Tern	M	L/c	_	+
110	Columbiformes	Pteroclididae	Pterocles exustus	Chestnut- bellied Sandgrouse	R	Ra	-	+
111	Columbiformes	Pteroclididae	Pterocles alchata	Painted Sandgrouse	R	Ra	_	+
112	Columbiformes	Columbidae	Columba livia	Blue Rock Pigeon	R	C	-	+
113	Columbiformes	Columbidae	Streptopelia decaocto	Ring Dove	R	С	+	+

S. No.	Order	Family	Scientific Name	Common Name	Occurre nce	Status	Recorded earlier (Ghalib <i>et</i> <i>al.</i> , 2000)	Recorded during present study (2007-2010)
114	Columbiformes	Columbidae	Streptopelia senegalensis	Little Brown or Senegal Dove	R	С	Ι	+
115	Psittaciformes	Psittacidae	Psittacula krameri	Rose ringed Parakeet	R	L / c	+	+
116	Cuculiformes	Cuculidae	Eudynamys scolopacea	Indian Koel	R	L / c	+	+
117	Strigiformes	Tytonidae	Tyto alba	Indian Barn Owl	R	L / c	_	+
118	Strigiformes	Strigidae	Bubo bubo	Eagle Owl	R	L / c	+	+
119	Strigiformes	Strigidae	Bubo coromandus	Dusky Eagle or Horned Owl	WV	Ra	-	+
120	Strigiformes	Strigidae	Athene brama	Spotted Owlet	R	L / c	+	+
121	Strigiformes	Strigidae	Asio otus	Long eared Owl	WV	L / c	_	+
122	Caprimulgiformes	Caprimulgidae	Caprimulgus europaeus	European Nightjar	R	Ra	+	+
123	Caprimulgiformes	Caprimulgidae	Caprimulgus mahrattensis	Syke's Nightjar	R	L / c	+	-
124	Caprimulgiformes	Caprimulgidae	Caprimulgus asiaticus	Indian Nightjar	R	L/c	+	+
125	Apodiformes	Apodidae	Apus apus	Common Swift	SBV	L/c	+	_
126	Apodiformes	Apodidae	Tachymar- ptis melba	Alpine Swift	М	L / c	+	_
127	Apodiformes	Apodidae	Apus affinis	House Swift	SV	Ra		+
128	Coraciiformes	Alcedinidae	Ceryle rudis	Indian Pied Kingfisher	R	С	+	+
129	Coraciiformes	Alcedinidae	Alcedo atthis	Indian Small Blue Kingfisher	R	L / c	+	+
130	Coraciiformes	Alcedinidae	Halcyon smyrnensis	White breasted Kingfisher	R	С	_	+
131	Coraciiformes	Meropidae	Merops persicus	Blue Cheeked Bee-eater	SBV/P M	L / c	+	+
132	Coraciiformes	Meropidae	Merops orientalis	Common Bee-eater	R	L/c	+	_
133	Coraciiformes	Coraciidae	Coracias benghalensis	Roller or Blue Jay	R	С	+	+
134	Coraciiformes	Upupidae	Upupa epops	Ноорое	WV	С		+
135	Piciformes	Picidae	Dinopium benghalense	Sind Golden Backed Woodpecker	R	L / c	-	+
136	Piciformes	Picidae	Dendrocopos assimilIs	Sind pied Woodpecker	R	С	+	+
137	Passeriformes	Alaudidae	Mirafra erythroptera	Indian Bush Lark / Sind Redwinged Bush Lark	R	L/c	+	+
138	Passeriformes	Alaudidae	Eremopterix grisea	Ashy Crowned Finch-Lark	R	С	+	+

Table	7.	Continue
-------	----	----------

S. No.	Order	Family	Scientific Name	Common Name	Occurre nce	Status	Recorded earlier (Ghalib <i>et</i> <i>al.</i> , 2000)	Recorded during present study (2007-2010)
139	Passeriformes	Alaudidae	Eremopterix nigriceps	Black Crowned Finch Lark	R	С	+	+
140	Passeriformes	Alaudidae	Ammomanes desertri	Desert Finch Lark	R	С		+
141	Passeriformes	Alaudidae	Alaemon alaudipes	Greater Hoopoe Lark	R	R	+	_
142	Passeriformes	Alaudidae	Calandrella rufescens	Lesser Short- Toed Lark	WV	L / c	_	+
143	Passeriformes	Alaudidae	Galerida cristata	Crested Lark	R	С	+	+
144	Passeriformes	Hirundinidae	Riparia riparia	Collared Sand Martin	WV	С	-	+
145	Passeriformes	Hirundinidae	Hirundo concolor	Dusky Crag Martin	R	L / c	_	+
146	Passeriformes	Hirundinidae	Hirundo rupestris	Crag Martin	R	L/c	+	-
147	Passeriformes	Hirundinidae	Hirundo fuligula	Pale Crag or Rock Martin	R	L/c	+	_
148	Passeriformes	Hirundinidae	Hirundo smithi	Wire-tailed Swallow	R	L / c	_	+
149	Passeriformes	Hirundinidae	Hirundo daurica	Redrumped Swallow	R	L/c	+	_
150	Passeriformes	Laniidae	Lanius isabellinus	Isabelline Shrike	PM	L/c	+	_
151	Passeriformes	Laniidae	Lanius excubitor	Grey Shrike	R	L / c	+	+
152	Passeriformes	Laniidae	Lanius vittatus	Bay backed Shrike	R	С	_	+
153	Passeriformes	Laniidae	Lanius schach	Rufous- backed Shrike	R	L / c	_	+
154	Passeriformes	Dicruridae	Dicrurus adsimilis	King Crow / Black Drongo	R	С	+	+
155	Passeriformes	Sturnidae	Acridotheres tristis	Common Myna	R	С	+	_
156	Passeriformes	Sturnidae	Acridotheres ginginianus	Bank Myna	R	С	+	+
157	Passeriformes	Sturnidae	Sturnus roseus	Rosy Starling	WV	L/c	+	+
158	Passeriformes	Corvidae	Dendrocitta vagabunda	Indian Tree - pie	R	L/c	+	-
159	Passeriformes	Corvidae	Corvus splendens	Sindh House Crow	R	С	+	+
160	Passeriformes	Bombycillidae	Hypocolius ampelinus	Grey Hypocolius	WV	Ra	+	_
161	Passeriformes	Campephagidae	Tephrodornis pondicerianus	Common Wood Shrike	R	L / c	+	+
162	Passeriformes	Campephagidae	Pericrocotus cinnamomeus	Small Minivet	R	L/c	+	_
163	Passeriformes	Pyconotidae	Pycnonotus leucogenys	White Cheeked Bulbul	R	С	+	+

S. No.	Order	Family	Scientific Name	Common Name	Occurre nce	Status	Recorded earlier (Ghalib <i>et</i> <i>al.</i> , 2000)	Recorded during present study (2007-2010)
164	Passeriformes	Pyconotidae	Pycnonotus cafer	Red-vented Bulbul	R	С	_	+
165	Passeriformes	Timaliidae	Turdoides caudatus	Common Babbler	R	С	+	_
166	Passeriformes	Timaliidae	Turdoides striatus	Sind Jungle Babbler	R	C	_	+
167	Passeriformes	Sylviidae	Prinia buchanani	Rufous Fronted Wren Warbler	WV	L / c	+	+
168	Passeriformes	Sylviidae	Prinia burnesii	Long tailed Grass Warbler	R	L/c	_	+
169	Passeriformes	Sylviidae	Sylvia curruca	Lesser Whitethroat	WV	L / c	-	+
170	Passeriformes	Sylviidae	Sylvia nana	Desert Warbler	WV	С	-	+
171	Passeriformes	Sylviidae	Phylloscopus sindianus	Sind Chiffchaff	WV	С	_	+
172	Passeriformes	Sylviidae	Phylloscopus negletus	Plain Willow Warbler	WV	Ra	+	_
173	Passeriformes	Sylviidae	Acrocerphalus dumetorum	Blyth's Reed Warbler	PM	L/c	+	_
174	Passeriformes	Sylviidae	Scotocerca inquieta	Streaked Scrub Warbler	R	L/c	+	+
175	Passeriformes	Turdidae	Saxicola caprata	Pied Bush Chat	R	С	-	+
176	Passeriformes	Turdidae	Oenanthe isabellina	Isabelline Wheatear	WV	L/c	+	+
177	Passeriformes	Turdidae	Oenanthe xanthoprymna	Red tailed Wheatear	WV	L/c	+	-
178	Passeriformes	Turdidae	Oenanthe deserti	Desert Wheatear	WV	L / c	+	+
179	Passeriformes	Turdidae	Oenanthe picata	Eastern Pied Wheatear	WV	L/c	+	+
180	Passeriformes	Turdidae	Oenanthe alboniger	Hume's Wheatear	R	L/c	+	+
181	Passeriformes	Turdidae	Saxicoloides fulicata	Indian Robin	R	C	-	+
182	Passeriformes	Turdidae	Turdus philomelos	Song Thrush Long billed	WV	Ra	+	_
183	Passeriformes	Motacillidae	Anthus similis	Pipit	R	Ra C	+	-
184	Passeriformes	Motacillidae	Motacilla flava Motacilla	Yellow Wagtail White or	PM WV	C C	+	+ +
185	Passeriformes Passeriformes	Motacillidae	Motacilla alba Motacilla	Pied Wagtail	WV WV	L/c	_	+
186 187	Passeriformes	Motacillidae	Motacilla cinerea Motacilla	Grey Wagtail Citrine	WV WV	L / c Ra	-+	+
187	Passeriformes	Nectariniidae	citreola Nectarinia	Wagtail Purple	R	С	+	- +
188	Passeriformes	Passeridae	asiatica Passer	Sunbird House	R	C		+
109	1 assernormes	r asseriuae	Passer domesticus	Sparrow	К	C	_	т

S. No.	Order	Family	Scientific Name	Common Name	Occurre nce	Status	Recorded earlier (Ghalib <i>et</i> <i>al.</i> , 2000)	Recorded during present study (2007-2010)
190	Passeriformes	Passeridae	Passer his- paniolensis	Spanish Sparrow	R	L/c	+	_
191	Passeriformes	Passeridae	Passer pyrrhonotus	Sind Jungle Sparrow	R	С	_	+
192	Passeriformes	Passeridae	Petronia xanthocollis	Yellow throated Sparrow	R	С	+	+
193	Passeriformes	Estrildidae	Lonchura malabarica	White throated Munia	R	L / c	+	+
194	Passeriformes	Fringillidae	Bucanetes githagineus	Trumpeter Finch	R	L/c	+	_
195	Passeriformes	Emberizidae	Emberiza melanoceph ala	Black-headed Bunting	PM	L / c	+	+
196	Passeriformes	Emberizidae	Emberiza buchanani	Grey – necked Bunting	WV	L/c	+	_
197	Passeriformes	Emberizidae	Emberiza striolata	House Bunting	R	L/c	+	_

Table 7. Continue...

Numbers of birds recorded

Total species of birds recorded (years 2000 + 2010) =197, Total species of birds recorded in the present study = 160 Total species of birds recorded previously (year 2000) = 128

Total No. of species of birds recorded during the previous studies but not recorded during present study =37, New findings =68 Legend:

Occurrence:R = ResidentWV = Winter visitorSBV = Summer Breading VisitorPM = Passage migrantSV = Summer VisitorStatus:L / c = Less commonC = CommonRa = Rare

Table 7. List of Reptiles Recorded from Hub Dam.

S. No.	Order	Family	Scientific Name	Common Name	Status
01	Chelonia	Emydidae	Hardella thurjii	Brahminy River Turtle	L/c
02	Crocodilia	Crocodylidae	Crocodylus palustris	Marsh Crocodile	R
03	Squamata	Gekkonidae	Eublepharus maculatus	Fat tailed Gecko	L/c
04	Squamata	Gekkonidae	Hemidactylus brooki	Spotted Indian House Gecko	С
05	Squamata	Gekkonidae	Hemidactylus leschnaultii	Bark Gecko	L/c
06	Squamata	Gekkonidae	Hemidactylus flaviviridis	Yellow-bellied House Gecko	С
07	Squamata	Agamidae	Trapelus megalonyx	Afghan Ground Agama	L/c
08	Squamata	Agamidae	Trapelus agilis	Brilliant Agama	L/c
09	Squamata	Agamidae	Laudakia nupta	Yellow-headed Agama	L/c
10	Squamata	Agamidae	Calotes versicolor	Common Tree Lizard	С
11	Squamata	Agamidae	Noveumeces blythianus	Orange tail Skink	L/c
12	Squamata	Uromastycidae	Uromastix hardwickii	Indian Spiny-tailed Lizard	L/c
13	Squamata	Varanidae	Varanus bengalensis	Indian Monitor Lizard	L/c
14	Squamata	Varanidae	Varanus griseus	Indian Desert Monitor	L/c
15	Squamata	Lacertidae	Acanthodactylus cantoris	Indian Fringed-toed Lizard	С
16	Squamata	Typhlopidae	Typhlops porrectus	Slender Blind Snake	L/c
17	Squamata	Boidae	Eryx johnii	Indian Sand Boa	L/c
18	Squamata	Boidae	Psommophis candanura	Indian Sand Snake	L/c
19	Squamata	Colubridae	Platyceps rhodorachis	Cliff Racer	L/c
20	Squamata	Colubridae	Platyceps vertromaculatus	Glossy bellied Racer	L/c
21	Squamata	Elapidae	Naja naja	Indian Cobra	L/c
22	Squamata	Elapidae	Bungarus caeruleus	Common Krait	R
23	Squamata	Viperidae	Echis carinatus	Saw Scaled Viper	L/c

Status: L/c = Less common

S. No.	Order	Family	Scientific Name	Common Name	Status
01	Anura	Bufonidae	Bufo stomaticus	Indus Valley Toad	L/c
02	Anura	Ranidae	Euphlyctis cyanophlyctis	Skittering Frog	С
03	Anura	Ranidae	Sphaerotheca breviceps	Burrowing Frog	L/c

Table 8. List of Amphibians Recorded from Hub Dam

Status: L / c = Less common C = Common R = Rare

Table 9. List of Fishes Recorded from Hub Dam.

S. No.	Order	Family	Scientific Name
01	Clupeiformes	Clupeidae	Gadusia chapra
02	Osteoglossiformes	Notopteridae	Notopterus chitala
03	Osteoglossiformes	Notopteridae	Notopterus notopterus
04	Cypriniformes	Cyprinidae	Salmostoma bacaila
05	Cypriniformes	Cyprinidae	Barbodes sarana
06	Cypriniformes	Cyprinidae	Catla catla
07	Cypriniformes	Cyprinidae	Cirrhinus mrigala
08	Cypriniformes	Cyprinidae	Cirrhinus reba
09	Cypriniformes	Cyprinidae	Labeo dyocheilus
10	Cypriniformes	Cyprinidae	Labeo gonius
11	Cypriniformes	Cyprinidae	Labeo rohita
12	Cypriniformes	Cyprinidae	Labeo calbasu
13	Cypriniformes	Cyprinidae	Labeo sindensis
14	Cypriniformes	Cyprinidae	Labeo diplostomus
15	Cypriniformes	Cyprinidae	Cheila bacaila
16	Cypriniformes	Cyprinidae	Cheila laubuca
17	Cypriniformes	Cyprinidae	Danio devario
18	Cypriniformes	Cyprinidae	Tor putitora
19	Cypriniformes	Cyprinidae	Barbus ticto
20	Cypriniformes	Cyprinidae	Barbus sarana
21	Cypriniformes	Cyprinidae	Ctenopharyngodon idella
22	Cypriniformes	Cyprinidae	Cyprinus carpio
23	Siluriformes	Siluridae	Wallago attu
24	Siluriformes	Siluridae	Mystus seenghala
25	Channiformes	Channidae	Channa marulia
26	Perciformes	Gobidae	Glossogobius giuris
27	Perciformes	Cichlidae	Oreochromis mossambicus
28	Symbranchiformes	Mastacembelidae	Mastacembelus armatus
29	Chiocephalioformes	Ophicephalidae	Ophicephalus.

Fishes

Twenty nine species of fishes were recorded viz. Gadusia chapra, Notopterus chitala, Notopterus notopterus, Salmostoma bacaila, Barbodes sarana, Catla catla, Cirrhinus mrigala, Cirrhinus reba, Labeo dyocheilus, Labeo gonius, Labeo rohita, Labeo calbasu, Labeo sindensis, Labeo diplostomus, Cheila bacaila, Cheila laubuca, Danio devario, Tor putitora, Barbus ticto, Barbus sarana, Ctenopharyngodon idella, Cyprinus carpio, Wallago attu, Mystus seenghala. Channa marulia, Glossogobius giuris, Oreochromis mossambicus, Mastacembelus armatus, and Ophicephalus (Table 9).

The most important edible fishes are *Cyprinus carpio, Tor putitora, Labeo sp., Barbus ticto* and *Barbus sarana.*

Flora

Twenty five species of flora were recorded (Table 10). The dominant species were viz. Acacia jacquemontii, Acacia nilotica, Aerva javanica, Acacia senegal, Alhaji maurorum, Azadirachta indica, Calotropis procera, Capparis decidua, Cassia italica, Cymbopogon schoenanthus, jwarancusa, Cymbopogon Eleusine compressa, Euphorbia caducifolia, Eucalyptus sp., Ficus religiosa, Lasiurus hirsutus, Leptadenia pyrotechnica, ferruginea, Prosopis glandulosa, Prosopis Olea juliflora, Rhazia stricta, Tamarix aphylla, Typha elephantiana, Zizyphus mauritiana and Zizyphus nummularia.

S. No.	Scientific Name
01	Acacia jacquemontii
02	Acacia nilotica
03	Aerva javanica
04	Acacia senegal
05	Alhaji maurorum
06	Azadirachta indica
07	Calotrotpis procera
08	Capparis decidua
09	Cassia italica
10	Cymbopogon jwarancusa
11	Cymbopogon schoenanthus
12	Eleusine compressa
13	Euphorbia caducifolia
14	Eucalyptus sp.
15	Ficus religiosa
16	Lasiurus hirsutus
17	Leptadenia pyrotechnica
18	Olea ferruginea
19	Prosopis glandulosa
20	Prosopis juliflora
21	Rhazia stricta
22	Tamarix aphylla
23	Typha elephantiana
24	Zizyphus mauritiana
25	Zizyphus nummularia

Table 10. List of Flora Recorded from Hub Dam.

CONCLUSION

Regarding the effects of environmental pollution, there are no serious effects on the aquatic biodiversity of the wetland. There is a serious decline in waterbird population but these are mainly due to social disturbances. Areas near spillway, main dam area, agriculture land/ shallow water, and Hub Canal are the prime habitats of birds in the wetland.

During the study no adverse effect of environment pollution was found on the aquatic biodiversity except for slightly higher concentrations of some trace metals in water. All the physico – chemical parameters were recorded as per limits of WHO Standard.The present investigation indicates that all the physico-chemical parameters are not exceeding the limits significantly for aquatic life of the Dam and no significant excessive concentration of heavy metals were recorded during the present study. Therefore the water of Hub Dam is chemically safe and fit for human consumption, irrigation supply and for the growth of aquatic flora and aquatic biodiversity.

It was also found that the Dam Water is polluted with microbial infestation and the assessed value is higher than

the set limits of WHO Standard. Therefore the water must be treated periodically before supplying particularly for domestic use.

There was not an observed correlation or significant differences between selected physico – chemical parameters and the different sites. The significant differences found between the metals will assist in the selection of an appropriate treatment method to minimize the contamination of the water of Hub Dam.

There are no serious threats to the biodiversity of the area. Hunting of wildlife has been controlled to a great extent.

RECOMMENDATIONS

- To maintain the water quality of Hub Dam, long-term monitoring program may be undertaken and regular environmental assessment must be made to ensure the safety of this wildlife sanctuary, Ramsar Site and its aquatic life.
- It is concluded that the area is rich in biodiversity. It is suggested that the management plan of the reservoir should be implemented in its true letter and spirit.
- Studies on the migration of water birds may be undertaken and ringing/ banding programmes may be started.
- Steps for the development of fisheries may be taken up, as the reservoir is an important area for fishes, particularly the Mahseer.
- Public awareness programmes may be taken up for the conservation and sustainable utilization of the natural resources.

REFERENCES

APHA. 1998. Standard Methods for the Examination of Water and Waste Water (20th ed.). America Public Health Association. New York, USA.

Beg, MAA., Mehmood, SN., Naeem, S. and Yousuf zai, AHK. 1988. Characterization of waters Part II. Chemical Composition of Hub Dam water and its Variations. Pak. J. Sci. Ind. Res. 31(3).

Brower, J., Zar, J. and Ende, C. 1990. Field and Laboratory Methods for General Ecology. Wm. C. Brown Publishers. 2460 Kerper Boulevard, Dubuque. A 52001.

EPA. 2002. US Environment Protection Agency: Safe Drinking Water Act Ammendment. www. Epa. Gov/safe water / mcl.Html

Fakayode, SO. 2005. Impact Assessment of Industrial Effluent on Water Quality of the Receiving Alaro River in Ibadan Nigeria. Ajean Henry 10:1-13.

Ghalib, SA., Hasnain, SA. and Khursheed, SN. 2000. Observations on the Avifauna of Hub Dam. Pak.J. Zool. 32(1):27-32.

Gorsuch, TT. 1976. Accuracy in Trace Analysis: Sample Handing and Graphite Furnace AAS. Anal: Chem. 55:981.

Grimmett, R., Inskipp, C. and Inskipp, T. 1998. Birds of the Indian Subcontinent. Oxford University Press, Delhi. pp890.

Jones, MH., PFA. Vander and GK. Alaman. 1983. Analysis Scheme for the Determination of Phosphate in Water. Anal. Chem. 15:58.

Khan, MZ., Hussain, B., Ghalib, SA., Zehra, A. and Mahmood, N. 2010^a. Distribution, Population Status and Environmental Impacts on Reptiles in Manora, Sandspit, Hawkesbay and Cape Monze areas of Karachi Coast. Canadian Journal of Pure and Applied Sciences. 4(1):1053-1071.

Khan, MZ., Ghalib, SA., Zehra, A. and Hussain. B. 2010^b. Bioecology and Conservation of the Birds of Hingol National Park, Balochistan. Journal of Basic and Applied Sciences. 6 (2):175-184.

Khuwar, MY. and Mastoi, GM. 1996. Metal Pollution in Fresh water. Science International Lahore. 8:327.

Mastoi, GM., Khahawar, MY. and Bozdar, RB. 1997. Some Studies on Jamshoro and Lakhra Power Stations Liquid Effluents. Proc. NSMTCC 97 Env. Pollut., Islamabad, Pakistan. 45-51.

Mench, M., Baize, D. and Mocquot, B. 1997. Level of Metals in Water. Env. Pollut. 95:93-10.

Olajire, AA. and Imeo, K. 2000. A Study of the Water Quality of the Osun River: Metal Monitoring and Geochemistry. Bull. Chem. Soc. Ethio. 14:1-8.

Roberts, TJ. 1997. The Mammals of Pakistan (Revised edition), Oxford University Press Karachi, Pakistan. pp525.

Roberts, TJ. 2005. Field Guide to the Large and Medium Sized Mammals of Pakistan. Oxford University Press, Karachi, Pakistan. pp259.

Roberst, TJ. 2005. Field guide to Small Mammals of Pakistan, Oxford University Press, Karachi.

Santa, MM., Gonzalez. W. and Lara, O. 1986. A Rsenic Levels in Chilean Marine Species. Bull. Env. Contam. Toxical. 32:635-639.

Snobe, K. and Usui. (eds.). 1993. A Field Guide to the Water Birds of Asia. Wild Birds Society of Japan, Tokyo. pp228.

Trivedi, RN. 1993. Environmental Science. Anmol Publ., New Delhi. pp202.

Welch, PS. 1952. Limnology (2nd ed.). Mc Graw Hill Book Comp., New York, USA.

WHO. 1982. Examination of Water for Pollution Control. World Health Organization, Regional Office for Europe: 203-204.

WHO. 1993. Guidline for Drinking Water Quality. World Health Organization. Geneva, Switzerland.

Received: Nov 4, 2011; Revised: Jan 4, 2012; Accepted: Feb 22, 2012